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In mammals, new neurons in the adult olfactory bulb originate from a pool of neural
stem cells in the subventricular zone of the lateral ventricles. Adult-born cells play
an important role in odor information processing by adjusting the neuronal network
to changing environmental conditions. Olfactory bulb neurogenesis is supported by
several non-neuronal cells. In this review, we focus on the role of astroglial cells in the
generation, migration, integration, and survival of new neurons in the adult forebrain.
In the subventricular zone, neural stem cells with astrocytic properties display regional
and temporal speci�city when generating different neuronal subtypes. Non-neurogenic
astrocytes contribute to the establishment and maintenance of the neurogenic niche.
Neuroblast chains migrate through the rostral migratory stream ensheathed by astrocytic
processes. Astrocytes play an important regulatory role inneuroblast migration and also
assist in the development of a vasculature scaffold in the migratory stream that is essential
for neuroblast migration in the postnatal brain. In the olfactory bulb, astrocytes help
to modulate the network through a complex release of cytokines, regulate blood �ow,
and provide metabolic support, which may promote the integration and survival of new
neurons. Astrocytes thus play a pivotal role in various processes of adult olfactory bulb
neurogenesis, and it is likely that many other functions of these glial cells will emerge in
the near future.
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INTRODUCTION

The olfactory bulb (OB), which plays a central role in odor information processing, has a multi-
layered cellular architecture. Mitral and tufted cells are the principal neurons of the OB (Shepherd
et al., 2004) and transmit information received from olfactory sensory neurons to the piriform
cortex, as well as the entorhinal cortex and the amygdala (Davis, 2004; Shepherd et al., 2004).
Information processing in the OB is modulated by two other groups of interneurons, that is,
periglomerular cells (PG) and granule cells (GC), which formdendro-dendritic synapses with
the principal neurons (Urban, 2002; Fukunaga et al., 2014). Interestingly, a substantial number
of PGs and GCs are constantly renewed during adulthood. Thisunusual form of plasticity,
which was �rst brought to light some �fty years ago and was con�rmed by subsequent research
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(Altman and Das, 1965; Altman, 1969; Luskin, 1993; Lois and
Alvarez-Buylla, 1994; Doetsch et al., 1999), allows the OB
circuitry to be �ne-tuned in response to olfactory behaviors
(Imayoshi et al., 2008; Breton-Provencher et al., 2009; Sultan
et al., 2011; Alonso et al., 2012; Arruda-Carvalho et al., 2014).
Many neurons arrive daily at the OB; therefore, it is necessary
to tightly control the migration and neurochemical diversity of
these cells, and to optimize the structure and function of the
OB network by selectively controlling newborn cells survival
and synaptic pruning. Astrocytes play a pivotal role in all these
processes. In this review, we summarize the current knowledge
of the role of astrocytes in adult OB neurogenesis and discuss
possible future directions in this exciting �eld.

NEUROGENIC AND NON-NEUROGENIC
ASTROCYTES IN THE ADULT SVZ

Neural Stem Cells
Adult neural stem cells (NSC) residing in the subventricular
zone (SVZ), which are also called B1 cells, are derived from
radial glial cells and have several astrocytic features. They
express the glial �brillary acidic (GFAP), glutamate aspartate
transporter, and brain lipid-binding proteins (Codega et al., 2014;
Fuentealba et al., 2015; Llorens-Bobadilla et al., 2015). They
also present ultra structural properties of astrocytes, including
a light cytoplasm, thick bundles of intermediate �laments, gap
junctions, glycogen granules, and dense bodies (Jackson and
Alvarez-Buylla, 2008). NSC can exist in either the quiescent or
the active state. Once activated, GFAP-positive B1 cells express
epidermal growth factor receptor (EGFR) and give rise to EGFR-
positive transit-amplifying C cells that in turn proliferate to
generate CD24-expressing migrating neuroblasts. Fluorescence-
activated cell sorting (FACS) using a combination of markers
such as CD24, GFAP, and EGFR has been used to purify activated
stem cells, transit-amplifying C cells, and neuroblasts (Pastrana
et al., 2009). Cells that express both EGFR and GFAP are
activated B1 stem cells that can be eliminated by an antimitotic
treatment (Pastrana et al., 2009). In contrast, GFAP-positive cells
that do not express EGFR may be either quiescent stem cells
or SVZ niche astrocytes. These cell populations can be further
distinguished by the expression of transmembrane glycoprotein,
CD133 (prominin), which is present on the primary cilia of
neural progenitors (Mirzadeh et al., 2008; Beckervordersandforth
et al., 2010; Codega et al., 2014). Using a combination of these
markers, it has been shown that quiescent B1 stem cells do not
express nestin, an intermediate �lament protein considered to be
a marker of NSC (Codega et al., 2014). The quiescent state of B1
cells is actively maintained by the GPCR ligands S1P and PDG2
(Codega et al., 2014), whereas BLBP is more restricted to active
NSC (Giachino et al., 2014).

Adult NSC display regional and temporal speci�city in
generating di�erent types of bulbar interneurons (Merkle et al.,
2007; Batista-Brito et al., 2008; Fuentealba et al., 2015). Based
on viral labeling of NSC in distinct spatial SVZ sub-regions,
it has been shown that dorsal NSC generate mostly super�cial
GC and dopaminergic tyrosine hydroxylase (TH)-positive PG,

whereas ventral NSC produce deep GC and calbindin-positive
PG (Merkle et al., 2007). Calretinin-positive GC and PG, as
well as four new subtypes of bulbar interneurons, are mostly
derived from NSC located in the anterior and anterior-ventral
tip of SVZ, respectively (Merkle et al., 2007, 2014). A lineage
tracing method consisting of introducing a large library of24-
base-pair oligonucleotide barcodes into the cells recently revealed
that regional speci�cation becomes evident at mouse embryonic
stage E11.5, which is maintained from the embryonic to the adult
stage (Fuentealba et al., 2015).

This regional heterogeneity is determined by the combinatory
action of morphogens and transcriptional factors. For example,
lineage tracing of the Emx1 and Gsh2 transcriptional factors,
which are highly expressed in the embryonic cortex ventricular
zone and the lateral ganglionic eminence, respectively, hasshown
that Emx1 progenitor cells reside in the adult dorsal SVZ and
generate calretinin-positive super�cial GC, whereas NSC derived
from the Gsh2 lineage produce calbindin-positive interneurons
and very low numbers of calretinin-expressing cells (Young et al.,
2007). Deep GCs are derived from the Nkx2.1 domain in the
ventral SVZ (Delgado and Lim, 2015), whereas four new types
of interneurons derived from the anterior-ventral tip of the
SVZ are generated from microdomains patterned by the Nkx6.2
and Zic family of transcriptional factors (Merkle et al., 2014).
Transcriptional factor Pax6 has a dual role and is required for
generating neuronal progenitors and also for directing them
toward dopaminergic PG (Hack et al., 2005). In contrast, zinc
�nger transcription factor Sp8 is required for the speci�cation
of calretinin and gabaergic/nondopaminergic PG (Waclaw et al.,
2006). NSC in the adult SVZ also generate a small number
glutamatergic juxtaglomerular cells in the OB that is speci�ed by
the expression of the Neurog2 and Tbr2 transcriptional factors
expressed in the subset of progenitors in the dorsal SVZ (Brill
et al., 2009). All these studies have established the repertoire of
transcriptional factor codes along the dorso-ventral and rostro-
caudal SVZ as well as the regional speci�cation of adult NSC in
the generation of interneuronal diversity in the OB. In addition
to these transcriptional factor codes, morphogens also play an
important role in the regional heterogeneity of adult NSC. A
study on reporter mice with labeled sonic hedgehog (Shh)-
responsive cells revealed that this morphogen gradient plays a
general role in the ventro-dorsal speci�cation of NSC (Ihrie et al.,
2011). Shh-responsive cells express GFAP and give rise primarily
to interneurons in the deep GC layer of the OB (Ihrie et al.,
2011), similar to what has been observed after viral labeling of
NSC in the ventral SVZ (Merkle et al., 2007). The removal of
Shh reduces the production of ventrally derived OB interneurons.
Conversely, the ectopic activation of Shh by the expression of
Smo2, a constitutive active receptor in dorsal NSC, generates
cells that are normally produced by progenitors in the ventral
SVZ (Ihrie et al., 2011). Interestingly, a transient domain of
Shh in the dorsal SVZ has also been identi�ed, but this domain
produces many cells with an oligodendrocyte lineage (Tong et al.,
2015). The dorsal domain of SVZ is also determined by persistent
Wnt/b-catenin signaling that specify NSC to an oligodendrocyte
lineage (Azim et al., 2014a,b). Indeed, live-imaging and single
cell tracking of adult NSC and their progeny has revealed
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that oligodendrogliogenic and neurogenic NSC constitute two
distinct lineages that display di�erent responsiveness to Wnt
signaling (Ortega et al., 2013).

In addition to regional heterogeneity, adult NSC also display
temporal speci�city. Batista-Bristo et al. used inducible genetic
fate mapping of Dlx1/2 precursors to analyze the precursors
of seven OB interneuron subtypes, from embryogenesis
through adulthood (Batista-Brito et al., 2008). They found
that the production of calbindin-positive interneurons reaches
a maximum during late embryogenesis and subsequently
decreases postnatally, whereas the opposite is observed for the
production of calretinin-positive cells (Batista-Brito et al., 2008).
Parvalbumin-positive interneurons in the external plexiform
layer are produced perinatally, while Blanes cells, which are
bulbar interneurons that provide feed-forward inhibition in
GC (Pressler and Strowbridge, 2006), are produced during
embryogenesis (Batista-Brito et al., 2008). They also showed that
the production of TH-positive cells in the glomerular layer peaks
during early embryogenesis and decreases thereafter. However,
it has also been demonstrated that TH-positive PG are mainly
produced by postnatal NSC (De Marchis et al., 2007).

The production of di�erent subtypes of interneurons from
B1 cells is thus regionally and temporally speci�ed. Regional
speci�cation allows embryonic information to be maintained,
from neuroepithelial to radial glial then to B1 cells, whereas
temporal speci�cation controls the order and subtype of the
interneurons generated. The precise interplay between temporal
and regional factors remains to be determined, as does how the
generation of speci�c interneuronal subtypes is regulated bythe
behavioral state of animals.

Non-Neurogenic Astrocytes
NSC are found in specialized microenvironments and are
exposed to a variety of factors from the cerebral spinal �uid via
small apical process bearing a non-motile primary cilium. NSC
also contact blood vessels via basal processes (Figure 1; Doetsch
et al., 1999; Mirzadeh et al., 2008). Transplanting NSC/progenitor
cells into the SVZ of another animal generates OB interneurons,
whereas transplanting NSC into non-neurogenic zones limits
their neurogenic potential (Alvarez-Buylla and Lim, 2004).
These results suggest that the SVZ microenvironment plays an
important role in the maintenance of the neurogenic properties
of NSC.

In addition to vasculature support and factors present
in the cerebrospinal �uid, non-neurogenic astrocytes in the
SVZ contribute to the establishment and maintenance of the
neurogenic microenvironment. Culturing dissociated perinatal
or adult SVZ NSC on astrocyte monolayers has shown that
direct contact between astrocytes and SVZ precursors support
the proliferation of these precursors (Lim and Alvarez-Buylla,
1999). Similarly, astrocytes from the hippocampus promote
the proliferation and neuronal fate of stem cells from the
dentate gyrus (Song et al., 2002). This shows that GFAP-positive
cells can be sub-divided into two distinct populations, that is,
those that are stem cells and those that have non-neurogenic
properties but that contribute to the establishment of the SVZ
microenvironment.

Labeling strategies based on the use of multiple
markers (Codega et al., 2014) or on split-Cre technology
(Beckervordersandforth et al., 2010) have been used to
discriminate between those two cell populations, as well as other
SVZ cells. In the case of split-Cre technology, the coincident
activity of GFAP and prominin1 promoters enables the selective
labeling and manipulation of adult NSC from non-neurogenic
astrocytes (Beckervordersandforth et al., 2010). A transcriptomic
analysis of these cells compared to other SVZ cells and non-
neurogenic astrocytes revealed enrichment in genes involved
in neuronal lineage priming, cilia biogenesis/function, and
Ca2C-dependent pathways (Beckervordersandforth et al., 2010).
Calcium waves have been observed in the SVZ, and it has been
suggested that they may de�ne the communication network
between NSC and niche astrocytes (Lacar et al., 2011). In line
with this, GFAP-positive cells in the SVZ express the gap junction
protein connexin 43 and display functional coupling involving
50–60 cells (Lacar et al., 2011).

Morphogens such as BMP, Notch, Wnt, and Shh are also
involved in the interplay between non-neurogenic astrocytes
and NSC. Shh released by astrocytes stimulates adult neural
progenitors to reenter the cell cycle (Jiao and Chen, 2008). GFAP-
positive cells in the SVZ express Notch 1 receptors as well as
its ligands (Givogri et al., 2006). Notch signaling implies cell-cell
interactions and mice de�cient in Dlk1, a Notch ligand delta-like
homolog, present de�cits in postnatal neurogenesis in the SVZ
(Ferrón et al., 2011). Dlk1 is secreted by niche astrocytes, whereas
its membrane-bound isoform is present in NSC and is required
for the inductive e�ect of secreted Dlk1 on the self-renewal of
NSC (Ferrón et al., 2011). BMP signaling is also active in adult
NSC (Colak et al., 2008). The conditional deletion of Smad4,
a transcriptional factor that mediates BMP signaling, reduces
neurogenesis and leads to increased numbers of oligodendrocytes
(Colak et al., 2008). BMP ligands and their receptors are
expressed by niche astrocytes (Peretto et al., 2004) and ependymal
cells express noggin, a BMP feedback inhibitor (Lim et al., 2000).
This suggests that there is a complex multicellular interplay
between niche astrocytes, ependymal cells, and NSC in the
regulation of BMP signaling in the adult SVZ. Wnt canonical,b-
catenin-dependent, and non-canonical planar cell polarity (PCP)
pathways have been detected in the SVZ (Hirota et al., 2015).
While Wnt/b-catenin controls the proliferation of NSC and
type C cells, the Wnt/PCP pathway regulates the proliferation,
migration, and di�erentiation of neuroblasts (Hirota et al., 2015).
In line with this, Wnt/b-catenin signaling activity has been
detected in GFAP-positive astrocytes and Mash1-positive cells
using reporter mice and stabilization ofb-catenin promotes NSC
proliferation (Adachi et al., 2007). Niche astrocytes promote NSC
expansion and proliferation via WNT7A (Moreno-Estellés et al.,
2012), and the activation of canonical Wnt signaling stimulates
the oligodendrogliogenic lineage in SVZ (Ortega et al., 2013).
Likewise, EGF signaling a�ects the proliferation of NSC and
type C cells (Doetsch et al., 2002; Pastrana et al., 2009) and
promotes oligodendrogenesis at the expense of neurogenesis
(Aguirre and Gallo, 2007; Aguirre et al., 2007). Astrocyte-
derived factors such as the pro-in�ammatory cytokines IL-
1b and IL-6 promote NSC neuronal di�erentiation, whereas
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FIGURE 1 | The role of astrocytes in the adult olfactory bulb ne urogenesis. A schematic drawing of the adult mouse forebrain and illustrations showing different
types of astrocytes in the subventricular zone (SVZ), rostral migratory stream (RMS), and olfactory bulb (OB). The functions of each type of astrocytes are indicated.

insulin-like growth factor binding protein 6 (IGFBP6) and
decorin inhibit it (Barkho et al., 2006). It has been also recently
demonstrated that quiescent NSC express higher levels of
tetraspanin CD9 than parenchymal astrocytes (Llorens-Bobadilla
et al., 2015). Thus, while several lines of evidence show that
GFAP-positive cells in the SVZ can be sub-divided into NSC
and niche cells, the relationship between them remains to be
investigated. The use of speci�c tools to selectively identify
and manipulate these two populations will help to pursue
this goal. Interestingly, after brain injury, a subpopulationof
reactive astrocytes may acquire stem cell properties in response
to Shh signaling (Sirko et al., 2013). This shows that the
delimitation between neurogenic and non-neurogenic astrocytes
is not �xed and may be dynamically modulated. To understand
the mechanisms underlying the activation of quiescent NSC,
single cell sequencing of two neurogenic regions of the adult
mice (Llorens-Bobadilla et al., 2015; Shin et al., 2015) has shown
that the downregulation of glycolic metabolism, Notch, and
BMP signaling, combined with the concomitant upregulation
of lineage-speci�c transcriptional factors, is required forthe
entrance of dormant NSC into the primed-quiescent state before
they are activated (Llorens-Bobadilla et al., 2015). After an acute
ischemic injury, dormant NSC enter into a pre-active state
via interferon gamma signaling and are subsequently activated

(Llorens-Bobadilla et al., 2015). Interestingly the downregulation
of glycolic metabolism (Gascón et al., 2016) and the forced
expression of neurogenic transcriptional factors (Berninger et al.,
2007; Heinrich et al., 2010) have also been shown to be required
for the direct reprogramming of astroglia from cortex into
neurons. While it remains to be determined how similar non-
neurogenic astrocytes and quiescent NSC are at the level of single
cell transcriptomics and what their responses are to di�erent
microenvironmental signals, these results suggest that there are
similarities in the molecular signatures of these cells.

ASTROCYTES IN THE ROSTRAL
MIGRATORY STREAM

GFAP-positive astrocytes in the RMS are derived from embryonic
radial glia cells (Alves et al., 2002). Some of these cells maintain
stem cell properties and can generate di�erent types of OB
interneurons (Gritti et al., 2002; Merkle et al., 2007; Alonso et al.,
2008). At the structural level, RMS astrocytes have elongated
morphology, with their branches aligned along blood vessels
and chains of migrating neuroblasts (Figure 1; Peretto et al.,
2005; Whitman et al., 2009). Astrocytes undergo extensive
reorganization in terms of their structural arrangement and
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expression of molecular cues postnatally (Pencea and Luskin,
2003; Peretto et al., 2005; Bozoyan et al., 2012). During early
postnatal development, astrocytes are located at the bordersof
the RMS, where they orchestrate the proper development of
the RMS (Peretto et al., 2005; Bozoyan et al., 2012). These glial
cells synthesize and secrete vascular endothelial growth factor
(VEGF), which controls blood vessel formation and growth
(Bozoyan et al., 2012). The vasculature sca�old is, in turn, used
by neuroblasts to migrate toward the OB (Snapyan et al., 2009;
Whitman et al., 2009; Bozoyan et al., 2012). During postnatal
development, astrocytes thus regulate the proper development
of the migratory stream which takes place at the borders of the
RMS. In contrast, the core of the RMS is mostly static and is
devoid of proliferative and migrating cells (Pencea and Luskin,
2003; Bozoyan et al., 2012). It remains to be determined how this
particular cellular organization with blood vessels, neuroblasts,
and astrocytes is transferred into the center of the RMS. We have
previously proposed that overall brain growth during postnatal
development leads to the elongation and thinning of the RMS.
This results in the collapse of the center and the maintenance
of the outer border of the RMS until adulthood (Bozoyan et al.,
2012).

During adulthood, astrocytes ensheath chains of neuroblasts,
and several studies have shown that they play a pivotal role in
neuroblast migration (Lois and Alvarez-Buylla, 1994; Snapyan
et al., 2009; Kaneko et al., 2010). Neuroblasts cultured on RMS
or OB astrocyte monolayers display robust migration, unlike
neuroblasts cultured on cortical astrocytes. These di�erences
are regulated by astrocyte-derived non-soluble factors (García-
Marqués et al., 2010). In addition, RMS astrocytes release
soluble melanoma inhibitory activity (MIA) protein, which is
required for neuroblast migration (Mason et al., 2001). The
disruption of the glial tube in mutant animals leads to defects
in neuroblast chain migration (Chazal et al., 2000; Anton
et al., 2004; Belvindrah et al., 2007; Kaneko et al., 2010).
For example, neuroblast chain migration is promoted byb1
integrin, and a de�ciency inb1 integrin leads to glial tube
disorganization and ectopic migration of neuroblasts into the
surrounding tissue (Belvindrah et al., 2007). Massive gliosis is
observed in neural cell adhesion molecule (NCAM)-de�cient
mice, which lead to neuroblast migration defects. Astrocytes also
express high a�nityg- aminobutyric acid (GABA) transporters
whereas neuroblasts express GABA. The inhibition of GABA
uptake reduces neuroblast migration (Bolteus and Bordey,
2004). The release of GABA from neuroblasts also induces
Ca2C �uctuations in astrocytes, leading to the insertion of
high a�nity TrkB receptors into the plasma membrane of
astrocytes (Snapyan et al., 2009). This, in turn, traps migration
promoting vasculature-derived brain derived neurotrophic factor
(BDNF), which leads to the entrance of migratory cells into the
stationary phase (Snapyan et al., 2009). Astrocytes also release
glutamate to control the migration and survival of neuroblasts
expressing NMDA receptors (Platel et al., 2010). All these studies
suggest that molecular and functional modi�cations in astrocytes
modulate neuroblast migration. Astrocytes may also undergo
rapid structural changes to sustain faithful neuroblast migration.
Neuroblasts secrete di�usible protein Slit1 whose receptor Robo

is present on astrocytes (Kaneko et al., 2010). Astrocytes respond
to the repulsive activity of neuroblast-derived Slit, leading to
the formation of structurally permissive glial tunnels that enable
neuronal migration (Kaneko et al., 2010).

These �ndings suggest that a complex tripartite interplay
occurs between neuroblasts, astrocytes, and endothelial cells
in the RMS. When assessing the role of speci�c molecular
pathways in the RMS, it is thus important to consider astrocytes,
neuroblasts, and blood vessels as a whole and not as “isolated”
units. This will make it possible to re�ne our understanding ofthe
cellular and molecular pathways that modulate the formation and
maintenance of the RMS and neuronal migration. In addition,
RMS astrocytes may be a heterogeneous population of cells
(Peretto et al., 2005; Whitman et al., 2009; Larriva-Sahd, 2014),
and further research is thus required to de�ne the various sub-
types of astroglia and their role in the RMS.

ASTROCYTES IN THE OB

Following their arrival in the OB, neuroblasts mature and
establish connections in the bulbar network. This occurs
initially by receiving axo-dendritic inputs and later through
dendrodendritic synapses to the principal neurons (Whitman
and Greer, 2007; Panzanelli et al., 2009). The OB has a high
density of astrocytes (Bailey and Shipley, 1993), but their role
in the maturation and integration of newborn cells remains
largely unexplored. Astrocytes may have various functions in
the brain network, ranging from the modulation of synaptic
transmission and synaptogenesis (Piet et al., 2004; Verkhratsky
and Nedergaard, 2014) to structural dynamics, transmitter
uptake, and the repair of brain lesions (Correale and Farez,
2015). Interestingly, it has been shown recently that the
synaptic integration of newborn hippocampal neurons is locally
controlled by astrocytes (Sultan et al., 2015). Blocking vesicular
release from astrocytes results in a lower spine density of
newborn cells, but only on the neuronal dendrites intersecting
the domains of manipulated astrocytes (Sultan et al., 2015). Since
the astroglial presynaptic sheath covers the majority of synapses
in the adult brain (Verkhratsky and Nedergaard, 2014), it is likely
that these cells also play an important role in the formation,
maintenance, and/or elimination of synapses in the adult OB.

Astrocytes may also coordinate neuronal metabolism and
blood �ow by controlling vasodilation and vasoconstrictionin
response to increased neural activity (Takano et al., 2006). This
in turn may a�ect the survival and integration of newborn cells.
Astrocytes control blood �ow through the activation of glutamate
receptors following intense activity of principal neurons (Takano
et al., 2006) or via GABA uptake mechanisms in response to
the gabaergic activity of bulbar interneurons (Doengi et al.,
2009). This activation triggers an increase in intracellular calcium
ions in astrocytes, releasing arachidonic acid and vasoactive
metabolites (Otsu et al., 2015). This can happen in the �ne
processes of astrocytes independently of soma activation, which
allows for �ne control of blood �ow (Otsu et al., 2015) and
consequently the local modulation of synaptic units. Astrocytes
also provide metabolic substrates from blood vessels to distant
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neurons through gap junctions (Rouach et al., 2008), which may
modulate the morpho-functional properties of newborn neurons
farther away.

Astrocytes also control the survival of adult-born neurons
via the growth factor-induced release of cytokines (Khodosevich
et al., 2013). Connective tissue growth factor (CTGF) is expressed
by tufted cells in the OB and enhances the proapoptotic activity
of astrocyte-derived transforming growth factor-beta 2 (TGF-b2)
(Khodosevich et al., 2013). The release of TGF-b2 from glial cells
in turn decreases the survival of PG in an activity-dependent
manner (Khodosevich et al., 2013). While the role of astrocytes in
the survival, integration, and synaptic maintenance of newborn
cells needs to be further studied, these glial cells may modulate
the structuro-functional properties of interneurons by bothlocal
and long-distance signals. They also are strategically positioned
to link activity-dependent changes in blood �ow and neuronal
metabolism and activity.

In conclusion, astrocytes play a pivotal role in OB
neurogenesis. They control the generation, migration, and

survival of di�erent subtypes of interneurons as well as
the synaptic pruning of newborn cells. Although several
key features of astrocytes involved in controlling bulbar
neurogenesis have emerged in recent decades, more studies
combining new genetic tools, functional imaging, and
behavioral tests are required to decipher their role in adult
neurogenesis.
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